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FAST MULTIPOLE METHOD IN SIMULATIONS OF AQUEOUS SYSTEMS

James N. Glosli and Michael R. Philpott
IBM Research Division, Almaden Research Center
650 Harry Road, San Jose, CA 95120-6099

Abstract

The fast multipole method (fmm) for calculating electric fields developed by
Greengard and Rokhlin (J. Comp. Phys. 73, 325(1987)), has been implemented
specifically for molecular dynamics simulations of electrochemical problems
including boundary conditions associated with metal electrodes. This order N
(number of charged particles) algorithm, is known to be computationally much
more efficient than direct or Ewald sum methods (order N2) for systems with
as few as one thousand charged particles (equivalent to 300 water molecules).
Timings and accuracy estimates with system size N (16 < N < 16000) are given
to illustrate the effectiveness and efficiency of the fmm.

As an application of fmm we describe it's use with constant temperature mo-
lecular dynamics to calculate the dielectric constant of the spce water model in
bulk at temperatures 298K and 361K. System sizes of 27, 64, 125 and 216 water
molecules were considered. Comparison with the Ewald and reaction field
methods was made. At 298K the dielectric constant was calculated to be
€=75.545% and at 361K £€=57.314%. Both values compare well with exper-
iment and the reaction field theory simulations.

L. INTRODUCTION

Molecular dynamics and Monte Carlo simulations of electrolyte systems require the evaluation
of the superimposed Coulomb fields of thousands particles ( a mere S nm® of water contains
approximately 4200 atoms). In this paper we describe the fmm of Greengard and Rokhlin 14
and its successful application to molecular dynamics simulations of aqueous systems including
the calculation of electric polarization in model water systems. Specialization to interfacial
problems of interest in electrochemistry is presented in outline only by way of a discussion of
boundary conditions imposed by various interfaces.

A number of methods are in use to calculate long range Coulomb fields. Direct summation with
a cut off after about 1.00 nm is common in many commercially available codes like Charmm 3
and Amber 6 7. Also available are empirical recipes like the Hingerty function 8 and other
distance dependent dielectric ‘constants’ 6 9. A brief survey of empirical dielectric recipes in
use in biological simulations has been given by Friedmann and Honig 0. Widely used when
rigor and accuracy and needed is the Ewald method !1-13, Also there are a host of plane wise
summation methods with origins in optics of crystals!4. For homogeneous systems the reaction
field method of Barker !5 is unrivaled for its simplicity and ease of use. Unfortunately this
method is not easily applied to liquid-solid interfaces though attempts to extend it have been
described !6. 17, Ewald summation crudely applied is proportional to N2 and at best N32 where




N is the number of charges. The fast multipole method developed by Greengard and Rokhlin
14 is order N, and clearly the only viable method for large simulations. The fmm technique is
also attractive for the ease of implementation of a variety of boundary conditions such as peri-
odic, Dirichlet, Neumann and mixed boundaries. The method is a recursive algorithm based on
multipole expansions for the evaluation of the Coulomb fields. The error in the algorithm is
well controlied and can be made arbitrary small by increasing the number of terms retained in
the multipole expansions. Additionally an adaptive version of the algorithm is available 3 in
which regions of low or no charge density are not subdivided when the charge count falls below
a specified integer. This results in considerable saving of computer time, and will make the code
particularly useful in computations of aquated membranes and globular proteins.

The method has a number of advantages over direct and Ewald sum methods. As already
mentioned it is an order N and hence faster for large number of particles (for a precision of
10~ the cross over size varies from 30 to 1000 depending on boundary conditions). Also within
the structure of the algorithm it is easy to impose a variety of boundary conditions. In contrast
to Ewald methods no addition computational complexity is introduced by imposing boundary
conditions. The method is also well suited to vector and parallel computation, allowing for the
possibility of exploring very large systems.

IL. DESCRIPTION OF THE FAST MULTIPOLE METHOD

In the calculations described later in this paper the three dimensional version of the fmm method
is used to evaluate the electrostatic interaction, however for the purposes of describing the
methods it suffices to consider the two dimensional version. The generalization to three di-
mensions is relatively straight forward.

Suppose simulation cell C contains N charged particles. The method divides C (which we will
call a level O box) into four level 1 boxes. See Figure 1. These boxes are then subdivided into
four more boxes creating an array of level 2 boxes. This process is repeated until some pre-
scribed level L is reached. In Figure 1 displays L=3. The finest level L is chosen to minimize
computation and in doing so is proportional to log(N). The boxes formed by the division of a
box are called children of the undivided 'parent’ box. The far field due each to box at the finest
level is calculated in terms of it's multipoles, up to order n. The precision of the method is set
by the order n. Next the multipole moments of the parents are created from the children's mo-
ments by a linear transformation, starting at the finest level and working upward to level 0.

The strategy now will be to calculate a local expansion for each box that represents the far field
potential. Beginning at level zero, the question is asked, which boxes are well separated from
the main computational cell? The answer will depend on the boundary conditions. For a system
with a ‘free’ boundary there are no well separated level 0 boxes because the there are no other
level 0 boxes! For any periodic boundary condition it is the array of all images except adjacent
images. The local expansion for the level zero box is found by transforming the multipole
expansion of each of the well separated boxes. In the case of the free boundary this is trivial
since there are no well separated boxes. However in the case of a periodic boundary condition
there is an infinite number of image boxes. Fortunately in this case symmetry enables the local
expansion to be calculated easily. The local expansion of a level 1 box can be considered to
consist of two parts. One part representing particles included in the local expansion of the parent
and another part for all particies in well separated boxes that are not present in the first part.




Figure 1. Schematic representation of the L = 3 subdivision of
the computational box C used in the fast multipole method.

The number of these well separated boxes is finite and bounded. The contribution to the local
expansion by particles in the first part is simply found by transforming the origin of the parent's
local expansion to the center of the box. The second part is calculated by transforming a finite
number of multipole expansions. Once this procedure is applied to all level 1 boxes it is applied
recursively to level 2 and so on. Finally a local expansion of all particles in well separated boxes
is found for each box at the finest level. What remains to be done is to find the potential due
to particles in adjacent boxes and this is calculated by doing a direct sum over particles in these
boxes.

The Figure 2 schematically illustrates the two dimensional analogs of systems of interest in
electrochemistry. Arrows show location of metal boundaries. In the first (a) the simulation cell
is replicated throughout 2-space, to represent an infinite bulk fluid. In cases (b-d) it is replicated
laterally in the x direction, however the y direction has to be handled differently in each case.
In case b the system is a either an isolated (free’) film or one bounded by two low dielectric
surfaces. In case ¢ the film is bounded by two metals which require the inclusion of images
boxes C (generated from C by charge conjugation: q = -q and reflection in the xy plane: z-z,
— z,z ). The bottom right case (d) represents an emersed clectrolyte film of finite thickness
on a metal electrode. In this case there is only one set of image boxes C

The implementation of these various boundary condition is straight forward in the fmm tech-
nique. For instance consider the periodic boundaries. In this case the cell C is replicated in
space, as illustrated by Figure 2a. Since we know the multipole expansions for the cell C, we
thereby know the expansions for each of the boxes in any image cell. To begin the calculation
of the local expansion of cell C (i.e. the level 0 box) we need to sum over all transformations
of the coefficients of well separated level 0 image boxes. To sum over all these transformations
each time would be extremely costly in cpu time. However if we use the fact that the trans-
formation operator is a linear operator and the coefficients of each cell are identical then we need
only sum over all the coefficients to find a new operator that then can be applied to the multipole
coefficients of cell C (at level 0) in order to find the local expansion coefficients of cell C. The
beauty of this approach is that this operator is independent of the particle positions and therefore
only needs to be calculated once in a lifetime.




CiC|C
a. Bulk liquid b. Isolated film

C C
[ C

> [SIeferele]  [lelele]e]
C C CiCjC(C|C '
C C

c. Film between d. Emersed fiim on
metal electrodes metal electrode

Figure 2. Two dimensional analogs of boundary conditions frequently met in
molecular dynamics simulations of electrochemical systems. Armrows show lo-
cation of metal boundaries.

In the case of an isolated film as illustrated in Figure 2b, the same approach as describe above
will work. The only difference is that the sum over transformation operators is restricted to a
single row. So the summed operator will be different from above but still only needs to be
calculated once in a lifetime. The introduction of metal boundaries introduces images that are
related to the root cell by charge conjugation and inversion operations. For example consider
Figure 2c, where a periodic film is constmmed between two metal plates. The images cells now
consists of alternating rows of C and € cells. By considering the heavily outline box as the
primitive cell in the system, the system is mapped back to a fully periodic system. One may
be tempted to use the summed operator that was calculated for the case 2a, however one needs
to be concemed with the conditional convergence of the operator sums. In case 2a the appro-
priate order is to sum over spherical shells, since one may argue that the physical system is ro-
tationally invariant even though the replicated lattice of cells is cubic (in 3-space) or square (in
2-space). However in case 2c the isotopic symmetry has been broken by the metal plates and
the sums must be performed in slab fashion. The case illustrated by Figure 2d can be mapped
to case 2b.

III. VALIDATION

In this section the fmm method will be compared with other methods for evaluating electrostatic
interactions. The comparisons are made among eleven systems spanning three orders of mag-
nitude in size N and with three different boundary conditions:

1) free boundaries
2) periodic in x,y,z
3) periodic in x and y and free the z direction.




For these comparisons as well as the rest of the paper, this implementation of fmm method re-
tained the set of spherical harmonics (Ya. | 0 <1 < 7) in all expansions. This typically results in
a relative accuracy of the order of 10-* The number of levels was chosen to minimize the
computation time and is dependent on the number of particles. To a good approximation this
minimum is found at L = logs(N/64).

For free boundaries the fmm is compared with direct summation methods. For the purpose of
this comparison it is assumed that the direct method is exact (actually only accurate to 10-15).
For the fully periodic system the comparison is made with the standard three dimensional Ewald
method. In the two dimensional periodic system the two dimensional slab Ewald method of
Rhee et al !8 is used for comparison. In the periodic systems (two and three dimensional) the
accuracy of the Ewald method is controlled by the number of terms in the real and reciprocal
space sums. Using a simple estimate of the error the cutoff radius in real and reciprocal space
was chosen to achieve an accuracy of approximately 10-4. To test the accuracy of both the fmm
and Ewald methods a high accuracy Ewald method was used. All the algorithms were coded
in double precision and run on an IBM RS6000 model 540 workstation.

To compare the methods an N particle test system was generated by choosing from a uniform
random distribution on the interval (-45,14) the charge and x,y,z coordinates of each of the par-
ticles. The systems are made neutral by adding a constant correction to each charge. In Table
1 the cpu time t, absolute relative error in the energy e;, and rms deviation of the force e, are
listed for the various methods. The cpu time t is in seconds and e is defined as,

e,,=.\/ Zi',(f.’""""“-f.-“‘“’)z/zi',(rf“")’ )

The far right hand column of table 1 list the number of levels L used in the fmm calculation.
At the end of the table is a summary of a fit of the execution time to the form t=ANP. The
coefficient P for the fmm method is close to one, as predicted, for all the boundary conditions.
In fact the deviation from one can be traced to surface to volume effects. From the fitting pa-
rameters a critical size N, at which the fast fmm method becomes most efficient is estimated and
it too is listed at the end of table 1. The estimate of N.= 17 for the two dimensional slab
boundary conditions is lower than the actual cross over value of 30, but the discrepancy can be
traced to surface to volume effects as well. As expected for large systems the fmm is much
more efficient than direct or Ewald methods. In particular for systems with finite geometry in
one or more dimensions, as in the two dimensional slab case the fmm is clearly superior to
Ewald methods.

free periodic 3d periodic 2d
N Direct fmm Ewald fmm Ewald fmm -
t 0.0 0.11 0.0 0.102 0.02 0.09
16 | e 0.0 0.0 1x 10-4 3x 103 2x 103 7x10-% | O
er 0.0 0.0 3x10-* 6x 103 1x 10-* Ix 104




N periodic 3d neriodic 2d
Direct fmm Ewald fmm Ewald fmm
t 0.0 0.10 0.010 0.153 0.12 0.10
32 € 0.0 0.0 2x 10 4x 103 4x 10-3 6x 10-¢
ér 0.0 0.0 8x 104 2% 104 3x 10-¢ 2x 104
t 00 0.11 0.034 0.22 041 0.14
63 |e 0.0 0.0 6x 10-4 1x 10-3 5% 103 Ix10-3
€r 0.0 0.0 6x 10-* Ix 10-4 2x 104 2x 104
t 0.02 0.17 0.14 0.36 1.7 0.24
125 | e 0.0 0.0 4x 103 2x 10-4 4x 10# 3x 10
€ 0.0 0.0 3x 104 6x 10-3 2x 10-¢ 2x 104
t 0.07 0.26 048 0.57 6.4 0.37
250 | e 0.0 0.0 2x 103 4x 10-3 9% 10~ 2x 104
& 0.0 0.0 6x10-* | 9x103 2x 10-¢ 2x 104
t 0.29 0.53 1.58 1.34 25.8 0.95
500 |e| 00 0.0 710 | 310 | 1x10¢ | 1x10
e 0.0 00 5% 104 7% 103 5% 1073 6x 10-3
t 1.12 1.28 59 26 105 1.88
1000 | e 0.0 Ix 10~ Ix 10~ 7% 10-3 1x 104 1x 103
ér 0.0 3x 10-3 2x 10-¢ 5% 10-3 Ix 104 1x 104
t 46 2.3 215 42 410 34
2000 | e 0.0 1x 10-3 2x 10~ 4% 103 2% 103 3% 103
er 0.0 3x 103 3x10¢ Tx 103 Ix 104 Ix 10-4
t 18.3 6.2 78 104
4000 | e 0.0 1x 10-¢ 7% 10-¢ 2x 103
e 0.0 3x 106 8x 103 6x 10-¢
t 73 14 255 215
8000 | e 0.0 3x 103 Ix 104 4x 10-3
ér 0.0 1x 104 5% 10-3 2x 10-¢




Table 1. The cpu time t in seconds for an IBM workstation RS6000/540, relative error e¢ in
energy and the RMS value of the relative error ¢ in the force.

free periodic 3d perniodic 2d
N Direct fmm Ewald fmm Ewald P
e | 310 26 950 35
16000 e | 00 3x105 | 2x10* | 2x10-¢ 3
e«| 00 1104 | 2x104 | 6x10-¢
A 1636 7.234 1.839 2.905 1.077 1.774
x10¢ | x10¢ | x10° | x10® | x10¢ | x10°
Fit 1.960 1.084 1.835 0.976 1.994 0.995
N. 1069 392 19

IV. APPLICATION TO ELECTROCHEMICAL SYSTEMS

Electrochemical systems prevade nature. At the simplest level they can be visualized as a col-
lection of polar entities held together by electrostatic interactions and held apart by the Pauli
repulsion interaction of their constituent electrons. Coulomb interactions being essentially long
range in nature, control the fluctuations in electric polarization that manifest as the dielectric
constant. Since 2 major component of the total interaction energy is electrostatic it is essential
to compute this part accurately if polarization effects are important. In the light of these intro-
ductory comments it is appropriate that we demonstrate the power of the fmm code as imple-
mented by us, in a calculation of the dielectric constant. First however it is necessary describe
briefly the models and interaction potentials used in these studies.

The spce water model 9. In this model water is represented as a lennard-jones atom centered
or. the oxygen atom O with ¢ = 0.3160 nm, € = 0.6502 kJ/mol. Embedded in the sphere are two
point masses H carrying charge q=0.4238lel in electron units. The HOH bond angle is 109.5°
and the OH bond length is 0.1 nm.

The total interaction energy. The Coulomb interaction between molecules was represented as
sum of 1/r interactions between all point charges. The short range part of the intermolecular
interaction was modeled by a lennard-jones potential between the O atoms of each water, and
smoothly truncated to zero at R =0.72 nm by the function T defined below. The electrostatic
coupling constant K had the value 138.936 KJ.nm/(mole- €?) in the units used in this calculation.
~e complete interaction energy U is,

12 G 6
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where i and j are molecular indices, and, o and B are atomic indices. The symbol A, represents
the set of all atoms of molecule i . The symbol R; is the distance between the center of mass
of molecules i and j. The symbol ry is the distance between atoms ¢ and .

The form of the truncation function T is givcn by,
R< R

TR) = ( ( ) ) R<R<R 3)

R<R

where R{=0.68 nm and R}=0.72 nm. The intege-3 m and n control the smoothness of the trun-
cation function at R} and R}, respectively. In this calculation n = m = 2 which insured that energy
was smooth up to and including first spatial derivatives.

Bond lengths and angles were explicitly cr ustrained by a quaternion formulation of the rigid
body equations of motion 20-22, The equations of motion were expressed as a set of first order
differential equations and a fourth order multi-step numerical scheme was used to integrate them
in time steps of 2 fs. At each time step a small scaling comrection was made to the quaternions
and velocities to correct global drift. Additionaly the global center of mass velocities in the x,
y and z directions were set to zero at each time step by shifting the molecular translational ve-
locities.

V. DIELECTRIC CONSTANT OF WATER

As a test of the fast multipole method in an actual molecular dynamics simulation we used it
to evaluate the dielectric constant of water in bulk. There h..ve been numerous simulations of
water dielectric constants. Unfortunately many omit important details that make it impossible
to repeat the calculation. There are however a few that have provided these details and we have
selected one clear enough to make comparisons. Previously Reddy and Berkowitz 23 used the
reaction field method to estimate dielectric constant of spce water. In this study we have used
both fmm and Ewald techniques to estimate dielectric constant of spce water. As necessary with
all simulations of Coulomb fields the boundary conditions at infinity need to be clearly specified.
We have assumed that the primitive cell has been periodically replicated to fill a sphere with
very large radius. Outside of the sphere space is assumed to be filled with a perfect conductor.
The appropriate fluctuation expression for the dielectric constant of the system with this
boundary conditions is:

<M>
3vir @

where M is the total polarization of the sample and €, is the dielectric constant of a vacuum.
The simulations where done for systems containing 27, 64, 125 and 216 spce water molecules
at temperature of 298K and 361K. .All the siraulations ran for at least 1 ns except for the 27
and 64 molecule systems at 361K which were integrated 0.5 ns. In the simulations at the higher
temperature 361K we evaluated coulomb fields by fmm and Ewald techniques in order to di-
rectly compare the two methods. In estimating the errors in the dielectric constant the temporal
correlation between the polarization of different samples is important. In this study configura-

€=




tions were stored every 0.1 ps and then binned. For large bin sizes the samples should be stat-
ically independent. This was tested by examining the variance of the average polarziation as a
function of bin size. If this appeared to be approaching an asymptotic value then the bin size
was deemed to be large enough ar.J the asymptotic value of the variance was used to estimate
the error ir &. Ysing this method we found agreement between the fmm and Ewald methods for
the siz: of the error. However our error estimate was much larger that the error estimates given
by Reddy and Berkowitz 23 for runs of similar length in their reaction field study.  However the
method they used to determine the error is not clear from reading their paper.

Seol  apmwewe I
= | T=361K using ewak 1
S0
() £ _’{ -{_
Q
= 60
o ) ® ¥ 2
[¢h)
a 50 +
| | I 1
27 64 125 216

Size N

Figure 3. The dependence of the relative dielectric constant €/€, of spce wcter
on the number N of molecules in the primative simulation cell.

Figure 3 shows a plot of dielectric constant versus size N the number of spce water molecules
in the basic simulation cell for two temperatures. The different data symbols refer to the results
from using fmm and Ewald methods to evaluate the electric forces acting on the charges. Oth-
erwise the two codes were identical. The first thing to note is that the fmm and Ewald tech-
niques agree within statistical error. The 216 molecule simulation with fmm can be compared
to Reddy and Berkowitz 23 reaction field simulation. Using fmm the value €=75.5t5% at

=298K and £=57.3 + 4% at T=361K is found for the dielectric constait of the spce water
model. In the reaction field study €(T=298K)=70.7+1% and &T=373K)=51 £ .7%. Using a
linear interpolation this would correspond to of €=54.1 at 361K. At the higher temperature
T=361K there appears to be oniy weak size dependence, whereas at T=298K the size dependence
is clearly apparant especially in the range from 125 to 216 molecules. The calculated values
agree well with experimental values 24,




VIL. CONCLUSIONS AND OUTLOOK

This paper described the first electrochemical application of the fast multipole method in a mo-
lecular dynamics calculation of the dielectric constant. The fast multipole method provides a
fast and accurate technique for the evaluation of electrostatic interactions and clearly is the
prefered method in systems with large numbers of charged particles. In a system of 216 spce
water molecules, which has 648 charges, the fmm took 62% of the time of an Ewald method
of the same accuracy. For 512 spce waters fmm takes only 30% of the time for Ewald. The
method is well suited to handle a variety of boundary conditions. Given that this method is
available in adaptive and parallelizable versions it is a very powerful tool for use in classical
simulations of systems with aqueous phases. Important future applicatons will not be confined
Just to electrolytes in the bulk or at planar surfaces. It is quite obvious that the method can be
used in simulations where water surrounds or is confined by irregular boundaries as are fre-
quently encountered in biological systems.
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